Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 16, 2026
-
Free, publicly-accessible full text available March 16, 2026
-
Free, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available June 1, 2026
-
Large language models (LLMs) are expected to follow in- structions from users and engage in conversations. Tech- niques to enhance LLMs’ instruction-following capabilities typically fine-tune them using data structured according to a predefined chat template. Although chat templates are shown to be effective in optimizing LLM performance, their impact on safety alignment of LLMs has been less understood, which is crucial for deploying LLMs safely at scale. In this paper, we investigate how chat templates affect safety alignment of LLMs. We identify a common vulnerability, named ChatBug, that is introduced by chat templates. Our key insight to identify ChatBug is that the chat templates provide a rigid format that need to be followed by LLMs, but not by users. Hence, a malicious user may not necessar- ily follow the chat template when prompting LLMs. Instead, malicious users could leverage their knowledge of the chat template and accordingly craft their prompts to bypass safety alignments of LLMs. We study two attacks to exploit the ChatBug vulnerability. Additionally, we demonstrate that the success of multiple existing attacks can be attributed to the ChatBug vulnerability. We show that a malicious user can exploit the ChatBug vulnerability of eight state-of-the- art (SOTA) LLMs and effectively elicit unintended responses from these models. Moreover, we show that ChatBug can be exploited by existing jailbreak attacks to enhance their at- tack success rates. We investigate potential countermeasures to ChatBug. Our results show that while adversarial train- ing effectively mitigates the ChatBug vulnerability, the vic- tim model incurs significant performance degradation. These results highlight the trade-off between safety alignment and helpfulness. Developing new methods for instruction tuning to balance this trade-off is an open and critical direction for future research.more » « lessFree, publicly-accessible full text available February 25, 2026
-
Free, publicly-accessible full text available January 20, 2026
-
Ooi, Boon S (Ed.)An energy/area-efficient low-cost broadband linearity enhancement technique using the hybrid of notch-filter and bandpass-filter micro-ring modulators (Hybrid-MRMs) is proposed to achieve higher than 3.01-dB improvement in spurious-free-dynamic-ranges with intermodulation distortions (dSFDRIMD) and 17.9-dB improvement in integral nonlinearity (dINLPP) over a conventional notch-filter MRM (NF-MRM) across a 4.8-dB extinction-ratio full-scale range based on rapid silicon-photonics fabrication results for the emerging applications of various analog and digital optical communication systems.more » « less
-
Capmany, JosĂ© (Ed.)This paper adopts advanced monolithic silicon-photonics integrated-circuits manufacturing capabilities to realize system-on-chip photonic-electronic linear-algebra accelerators for self-attention computation in various applications of deep-learning neural networks and Large Language Models. With the features of holistic co-design approaches, optical comb-based broadband modulations, and consecutive matrix-multiplication architecture, the system/circuit/device-level simulations of the proposed accelerator can achieve 2.14-TMAC/s/mm2 computation density and 27.9-fJ/MAC energy efficiency with practical considerations of power/area overhead due to photonic-electronic on-chip conversions, integrations, and calibrations.more » « less
-
Bosco, Gabriella (Ed.)A system-on-chip (SoC) photonic-electronic linear-algebra accelerator with the features of wavelength-division-multiplexing (WDM) based broadband photodetections and high-dimensional matrix-inversion operations fabricated in advanced monolithic silicon-photonics (M-SiPh) semiconductor process technology is proposed to achieve substantial leaps in computation density and energy efficiency, including realistic considerations of energy/area overhead due to electronic/photonic on-chip conversions, integrations, and calibrations through holistic co-design methodologies to support linear-detection based massive multiple-input multiple-output (MIMO) decoding technology requiring the inversion of channel matrices and other emergent applications limited by linear-algebra computation capacities.more » « less
An official website of the United States government

Full Text Available